Abstract

Results of recent research suggest that carefully designed multilayer neural networks with local “receptive fields” and shared weights may be unique in providing low error rates on handwritten digit recognition tasks. This study, however, demonstrates that these networks, radial basis function (RBF) networks, and k nearest-neighbor (kNN) classifiers, all provide similar low error rates on a large handwritten digit database. The backpropagation network is overall superior in memory usage and classification time but can provide “false positive” classifications when the input is not a digit. The backpropagation network also has the longest training time. The RBF classifier requires more memory and more classification time, but less training time. When high accuracy is warranted, the RBF classifier can generate a more effective confidence judgment for rejecting ambiguous inputs. The simple kNN classifier can also perform handwritten digit recognition, but requires a prohibitively large amount of memory and is much slower at classification. Nevertheless, the simplicity of the algorithm and fast training characteristics makes the kNN classifier an attractive candidate in hardware-assisted classification tasks. These results on a large, high input dimensional problem demonstrate that practical constraints including training time, memory usage, and classification time often constrain classifier selection more strongly than small differences in overall error rate.

This content is only available as a PDF.
You do not currently have access to this content.