An important feature of radial basis function neural networks is the existence of a fast, linear learning algorithm in a network capable of representing complex nonlinear mappings. Satisfactory generalization in these networks requires that the network mapping be sufficiently smooth. We show that a modification to the error functional allows smoothing to be introduced explicitly without significantly affecting the speed of training. A simple example is used to demonstrate the resulting improvement in the generalization properties of the network.

This content is only available as a PDF.
You do not currently have access to this content.