Abstract
The computational principles of slowness and predictability have been proposed to describe aspects of information processing in the visual system. From the perspective of slowness being a limited special case of predictability we investigate the relationship between these two principles empirically. On a collection of real-world data sets we compare the features extracted by slow feature analysis (SFA) to the features of three recently proposed methods for predictable feature extraction: forecastable component analysis, predictable feature analysis, and graph-based predictable feature analysis. Our experiments show that the predictability of the learned features is highly correlated, and, thus, SFA appears to effectively implement a method for extracting predictable features according to different measures of predictability.