We present a comprehensive framework of search methods, such as simulated annealing and batch training, for solving nonconvex optimization problems. These methods search a wider range by gradually decreasing the randomness added to the standard gradient descent method. The formulation that we define on the basis of this framework can be directly applied to neural network training. This produces an effective approach that gradually increases batch size during training. We also explain why large batch training degrades generalization performance, which previous studies have not clarified.

You do not currently have access to this content.