Abstract

Connectomes abound, but few for the human spinal cord. Using anatomical data in the literature, we constructed a draft connectivity map of the human spinal cord connectome, providing a template for the many calibrations of specialized behavior to be overlaid on it and the basis for an initial computational model.

A thorough literature review gleaned cell types, connectivity, and connection strength indications. Where human data were not available, we selected species that have been studied. Cadaveric spinal cord measurements, cross-sectional histology images, and cytoarchitectural data regarding cell size and density served as the starting point for estimating numbers of neurons. Simulations were run using neural circuitry simulation software.

The model contains the neural circuitry in all ten Rexed laminae with intralaminar, interlaminar, and intersegmental connections, as well as ascending and descending brain connections and estimated neuron counts for various cell types in every lamina of all 31 segments. We noted the presence of highly interconnected complex networks exhibiting several orders of recurrence. The model was used to perform a detailed study of spinal cord stimulation for analgesia.

This model is a starting point for workers to develop and test hypotheses across an array of biomedical applications focused on the spinal cord. Each such model requires additional calibrations to constrain its output to verifiable predictions. Future work will include simulating additional segments and expanding the research uses of the model.

You do not currently have access to this content.