Cognitive processes, such as learning and cognitive flexibility, are both difficult to measure and to sample continuously using objective tools because cognitive processes arise from distributed, high-dimensional neural activity. For both research and clinical applications, that dimensionality must be reduced. To reduce dimensionality and measure underlying cognitive processes, we propose a modeling framework in which a cognitive process is defined as a low-dimensional dynamical latent variable—called a cognitive state, which links high-dimensional neural recordings and multidimensional behavioral readouts. This framework allows us to decompose the hard problem of modeling the relationship between neural and behavioral data into separable encoding-decoding approaches. We first use a state-space modeling framework, the behavioral decoder, to articulate the relationship between an objective behavioral readout (e.g., response times) and cognitive state. The second step, the neural encoder, involves using a generalized linear model (GLM) to identify the relationship between the cognitive state and neural signals, such as local field potential (LFP). We then use the neural encoder model and a Bayesian filter to estimate cognitive state using neural data (LFP power) to generate the neural decoder. We provide goodness-of-fit analysis and model selection criteria in support of the encoding-decoding result. We apply this framework to estimate an underlying cognitive state from neural data in human participants (N=8) performing a cognitive conflict task. We successfully estimated the cognitive state within the 95% confidence intervals of that estimated using behavior readout for an average of 90% of task trials across participants. In contrast to previous encoder-decoder models, our proposed modeling framework incorporates LFP spectral power to encode and decode a cognitive state. The framework allowed us to capture the temporal evolution of the underlying cognitive processes, which could be key to the development of closed-loop experiments and treatments.

You do not currently have access to this content.