Animals make efficient probabilistic inferences based on uncertain and noisy information from the outside environment. It is known that probabilistic population codes, which have been proposed as a neural basis for encoding probability distributions, allow general neural networks (NNs) to perform near-optimal point estimation. However, the mechanism of sampling-based probabilistic inference has not been clarified. In this study, we trained two types of artificial NNs, feedforward NN (FFNN) and recurrent NN (RNN), to perform sampling-based probabilistic inference. Then we analyzed and compared their mechanisms of sampling. We found that sampling in RNN was performed by a mechanism that efficiently uses the properties of dynamical systems, unlike FFNN. In addition, we found that sampling in RNNs acted as an inductive bias, enabling a more accurate estimation than in maximum a posteriori estimation. These results provide important arguments for discussing the relationship between dynamical systems and information processing in NNs.

You do not currently have access to this content.