The Hodgkin-Huxley (H-H) landmark model is described by a system of four nonlinear differential equations that describes how action potentials in neurons are initiated and propagated. However, obtaining some of the parameters of the model requires a tedious combination of experiments and data tuning. In this letter, we propose the use of a minimal error iteration method to estimate some of the parameters in the H-H model, given the measurements of membrane potential. We provide numerical results showing that the approach approximates well some of the model's parameters, using the measured voltage as data, even in the presence of noise.

Supplementary data

You do not currently have access to this content.