We propose a new method of independent component analysis (ICA) in order to extract appropriate features from high-dimensional data. In general, matrix factorization methods including ICA have a problem regarding the interpretability of extracted features. For the improvement of interpretability, sparse constraint on a factorized matrix is helpful. With this background, we construct a new ICA method with sparsity. In our method, the 1-regularization term is added to the cost function of ICA, and minimization of the cost function is performed by a difference of convex functions algorithm. For the validity of our proposed method, we apply it to synthetic data and real functional magnetic resonance imaging data.

You do not currently have access to this content.