Abstract
The analogies between the mammalian primary visual cortex and the structure of CNNs used for image classification tasks suggest that the introduction of an additional preliminary convolutional module inspired by the mathematical modeling of the precortical neuronal circuits can improve robustness with respect to global light intensity and contrast variations in the input images. We validate this hypothesis using the popular databases MNIST, FashionMNIST, and SVHN for these variations once an extra module is added.
© 2024 Massachusetts Institute of Technology
2024
Massachusetts Institute of Technology
You do not currently have access to this content.