Memory is a complex process in the brain that involves the encoding, consolidation, and retrieval of previously experienced stimuli. The brain is capable of rapidly forming memories of sensory input. However, applying the memory system to real-world data poses challenges in practical implementation. This article demonstrates that through the integration of sparse spike pattern encoding scheme population tempotron, and various spike-timing-dependent plasticity (STDP) learning rules, supported by bounded weights and biological mechanisms, it is possible to rapidly form stable neural assemblies of external sensory inputs in a spiking neural circuit model inspired by the hippocampal structure. The model employs neural ensemble module and competitive learning strategies that mimic the pattern separation mechanism of the hippocampal dentate gyrus (DG) area to achieve nonoverlapping sparse coding. It also uses population tempotron and NMDA-(N-methyl-D-aspartate)mediated STDP to construct associative and episodic memories, analogous to the CA3 and CA1 regions. These memories are represented by strongly connected neural assemblies formed within just a few trials. Overall, this model offers a robust computational framework to accommodate rapid memory throughout the brain-wide memory process.

You do not currently have access to this content.