It is shown that local, extended objects of a metrical topological space shape the receptive fields of competitive neurons to local filters. Self-organized topology learning is then solved with the help of Hebbian learning together with extended objects that provide unique information about neighborhood relations. A topographical map is deduced and is used to speed up further adaptation in a changing environment with the help of Kohonen-type learning that teaches the neighbors of winning neurons as well.

This content is only available as a PDF.
You do not currently have access to this content.