This paper presents and evaluates a modular/hybrid connectionist system for speaker identification. Modularity has emerged as a powerful technique for reducing the complexity of connectionist systems, and allowing a priori knowledge to be incorporated into their design. Text-independent speaker identification is an inherently complex task where the amount of training data is often limited. It thus provides an ideal domain to test the validity of the modular/hybrid connectionist approach. To achieve such identification, we develop, in this paper, an architecture based upon the cooperation of several connectionist modules, and a Hidden Markov Model module. When tested on a population of 102 speakers extracted from the DARPA-TIMIT database, perfect identification was obtained.

This content is only available as a PDF.
You do not currently have access to this content.