Abstract

We prove that polynomial size discrete Hopfield networks with hidden units compute exactly the class of Boolean functions PSPACE/poly, i.e., the same functions as are computed by polynomial space-bounded nonuniform Turing machines. As a corollary to the construction, we observe also that networks with polynomially bounded interconnection weights compute exactly the class of functions P/poly, i.e., the class computed by polynomial time-bounded nonuniform Turing machines.

This content is only available as a PDF.
You do not currently have access to this content.