Abstract
Given N i.i.d. observations {Xi}Ni=1 taking values in a compact subset of Rd, such that p* denotes their common probability density function, we estimate p* from an exponential family of densities based on single hidden layer sigmoidal networks using a certain minimum complexity density estimation scheme. Assuming that p* possesses a certain exponential representation, we establish a rate of convergence, independent of the dimension d, for the expected Hellinger distance between the proposed minimum complexity density estimator and the true underlying density p*.
This content is only available as a PDF.
© 1996 Massachusetts Institute of Technology
1996
You do not currently have access to this content.