This paper explores the possibility that the formation of color blobs in primate striate cortex can be partly explained through the process of activity-based self-organization. We present a simulation of a highly simplified model of visual processing along the parvocellular pathway, that combines precortical color processing, excitatory and inhibitory cortical interactions, and Hebbian learning. The model self-organizes in response to natural color images and develops islands of unoriented, color-selective cells within a sea of contrast-sensitive, orientation-selective cells. By way of understanding this topography, a principal component analysis of the color inputs presented to the network reveals that the optimal linear coding of these inputs keeps color information and contrast information separate.

This content is only available as a PDF.
You do not currently have access to this content.