Abstract
This paper explores the possibility that the formation of color blobs in primate striate cortex can be partly explained through the process of activity-based self-organization. We present a simulation of a highly simplified model of visual processing along the parvocellular pathway, that combines precortical color processing, excitatory and inhibitory cortical interactions, and Hebbian learning. The model self-organizes in response to natural color images and develops islands of unoriented, color-selective cells within a sea of contrast-sensitive, orientation-selective cells. By way of understanding this topography, a principal component analysis of the color inputs presented to the network reveals that the optimal linear coding of these inputs keeps color information and contrast information separate.