The free energy principle (FEP) describes (biological) agents as minimizing a variational free energy (FE) with respect to a generative model of their environment. Active inference (AIF) is a corollary of the FEP that describes how agents explore and exploit their environment by minimizing an expected FE objective. In two related papers, we describe a scalable, epistemic approach to synthetic AIF by message passing on free-form Forney-style factor graphs (FFGs). A companion paper (part I of this article; Koudahl et al., 2023) introduces a constrained FFG (CFFG) notation that visually represents (generalized) FE objectives for AIF. This article (part II) derives message-passing algorithms that minimize (generalized) FE objectives on a CFFG by variational calculus. A comparison between simulated Bethe and generalized FE agents illustrates how the message-passing approach to synthetic AIF induces epistemic behavior on a T-maze navigation task. Extension of the T-maze simulation to learning goal statistics and a multiagent bargaining setting illustrate how this approach encourages reuse of nodes and updates in alternative settings. With a full message-passing account of synthetic AIF agents, it becomes possible to derive and reuse message updates across models and move closer to industrial applications of synthetic AIF.

This content is only available as a PDF.
You do not currently have access to this content.