Oscillatory correlograms are widely used to study neuronal activity that shows a joint periodic rhythm. In most cases, the statistical analysis of cross-correlation histograms (CCH) features is based on the null model of independent processes, and the resulting conclusions about the underlying processes remain qualitative. Therefore, we propose a spike train model for synchronous oscillatory firing activity that directly links characteristics of the CCH to parameters of the underlying processes. The model focuses particularly on asymmetric central peaks, which differ in slope and width on the two sides. Asymmetric peaks can be associated with phase offsets in the (sub-) millisecond range. These spatiotemporal firing patterns can be highly consistent across units yet invisible in the underlying processes. The proposed model includes a single temporal parameter that accounts for this peak asymmetry.

The model provides approaches for the analysis of oscillatory correlograms, taking into account dependencies and nonstationarities in the underlying processes. In particular, the auto- and the cross-correlogram can be investigated in a joint analysis because they depend on the same spike train parameters. Particular temporal interactions such as the degree to which different units synchronize in a common oscillatory rhythm can also be investigated. The analysis is demonstrated by application to a simulated data set.

This content is only available as a PDF.