Abstract

A novel unsupervised neural network for dimensionality reduction that seeks directions emphasizing multimodality is presented, and its connection to exploratory projection pursuit methods is discussed. This leads to a new statistical insight into the synaptic modification equations governing learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982). The importance of a dimensionality reduction principle based solely on distinguishing features is demonstrated using a phoneme recognition experiment. The extracted features are compared with features extracted using a backpropagation network.

This content is only available as a PDF.