Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Abigail Morrison
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (2): 301–339.
Published: 01 February 2009
FIGURES
| View All (10)
Abstract
View article
PDF
The ability to adapt behavior to maximize reward as a result of interactions with the environment is crucial for the survival of any higher organism. In the framework of reinforcement learning, temporal-difference learning algorithms provide an effective strategy for such goal-directed adaptation, but it is unclear to what extent these algorithms are compatible with neural computation. In this article, we present a spiking neural network model that implements actor-critic temporal-difference learning by combining local plasticity rules with a global reward signal. The network is capable of solving a nontrivial gridworld task with sparse rewards. We derive a quantitative mapping of plasticity parameters and synaptic weights to the corresponding variables in the standard algorithmic formulation and demonstrate that the network learns with a similar speed to its discrete time counterpart and attains the same equilibrium performance.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (6): 1437–1467.
Published: 01 June 2007
Abstract
View article
PDF
The balanced random network model attracts considerable interest because it explains the irregular spiking activity at low rates and large membrane potential fluctuations exhibited by cortical neurons in vivo. In this article, we investigate to what extent this model is also compatible with the experimentally observed phenomenon of spike-timing-dependent plasticity (STDP). Confronted with the plethora of theoretical models for STDP available, we reexamine the experimental data. On this basis, we propose a novel STDP update rule, with a multiplicative dependence on the synaptic weight for depression, and a power law dependence for potentiation. We show that this rule, when implemented in large, balanced networks of realistic connectivity and sparseness, is compatible with the asynchronous irregular activity regime. The resultant equilibrium weight distribution is unimodal with fluctuating individual weight trajectories and does not exhibit development of structure. We investigate the robustness of our results with respect to the relative strength of depression. We introduce synchronous stimulation to a group of neurons and demonstrate that the decoupling of this group from the rest of the network is so severe that it cannot effectively control the spiking of other neurons, even those with the highest convergence from this group.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (1): 47–79.
Published: 01 January 2007
Abstract
View article
PDF
Very large networks of spiking neurons can be simulated efficiently in parallel under the constraint that spike times are bound to an equidistant time grid. Within this scheme, the subthreshold dynamics of a wide class of integrate-and-fire-type neuron models can be integrated exactly from one grid point to the next. However, the loss in accuracy caused by restricting spike times to the grid can have undesirable consequences, which has led to interest in interpolating spike times between the grid points to retrieve an adequate representation of network dynamics. We demonstrate that the exact integration scheme can be combined naturally with off-grid spike events found by interpolation. We show that by exploiting the existence of a minimal synaptic propagation delay, the need for a central event queue is removed, so that the precision of event-driven simulation on the level of single neurons is combined with the efficiency of time-driven global scheduling. Further, for neuron models with linear subthreshold dynamics, even local event queuing can be avoided, resulting in much greater efficiency on the single-neuron level. These ideas are exemplified by two implementations of a widely used neuron model. We present a measure for the efficiency of network simulations in terms of their integration error and show that for a wide range of input spike rates, the novel techniques we present are both more accurate and faster than standard techniques.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (11): 2651–2679.
Published: 01 November 2006
Abstract
View article
PDF
Programmable logic designs are presented that achieve exact integration of leaky integrate-and-fire soma and dynamical synapse neuronal models and incorporate spike-time dependent plasticity and axonal delays. Highly accurate numerical performance has been achieved by modifying simpler forward-Euler-based circuitry requiring minimal circuit allocation, which, as we show, behaves equivalently to exact integration. These designs have been implemented and simulated at the behavioral and physical device levels, demonstrating close agreement with both numerical and analytical results. By exploiting finely grained parallelism and single clock cycle numerical iteration, these designs achieve simulation speeds at least five orders of magnitude faster than the nervous system, termed here hyper-real-time operation , when deployed on commercially available field-programmable gate array (FPGA) devices. Taken together, our designs form a programmable logic construction kit of commonly used neuronal model elements that supports the building of large and complex architectures of spiking neuron networks for real-time neuromorphic implementation, neurophysiological interfacing, or efficient parameter space investigations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (8): 1776–1801.
Published: 01 August 2005
Abstract
View article
PDF
The availability of efficient and reliable simulation tools is one of the mission-critical technologies in the fast-moving field of computational neuroscience. Research indicates that higher brain functions emerge from large and complex cortical networks and their interactions. The large number of elements (neurons) combined with the high connectivity (synapses) of the biological network and the specific type of interactions impose severe constraints on the explorable system size that previously have been hard to overcome. Here we present a collection of new techniques combined to a coherent simulation tool removing the fundamental obstacle in the computational study of biological neural networks: the enormous number of synaptic contacts per neuron. Distributing an individual simulation over multiple computers enables the investigation of networks orders of magnitude larger than previously possible. The software scales excellently on a wide range of tested hardware, so it can be used in an interactive and iterative fashion for the development of ideas, and results can be produced quickly even for very large networks. In con-trast to earlier approaches, a wide class of neuron models and synaptic dynamics can be represented.