Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Achilleas Koutsou
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (10): 2091–2128.
Published: 01 October 2016
FIGURES
| View All (11)
Abstract
View article
PDF
In this letter, we propose a definition of the operational mode of a neuron, that is, whether a neuron integrates over its input or detects coincidences. We complete the range of possible operational modes by a new mode we call gap detection, which means that a neuron responds to gaps in its stimulus. We propose a measure consisting of two scalar values, both ranging from −1 to +1: the neural drive, which indicates whether its stimulus excites the neuron, serves as background noise, or inhibits it; the neural mode, which indicates whether the neuron’s response is the result of integration over its input, of coincidence detection, or of gap detection; with all three modes possible for all neural drive values. This is a pure spike-based measure and can be applied to measure the influence of either all or subset of a neuron’s stimulus. We derive the measure by decomposing the reverse correlation, test it in several artificial and biological settings, and compare it to other measures, finding little or no correlation between them. We relate the results of the measure to neural parameters and investigate the effect of time delay during spike generation. Our results suggest that a neuron can use several different modes simultaneously on different subsets of its stimulus to enable it to respond to its stimulus in a complex manner.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (9): 2318–2345.
Published: 01 September 2012
FIGURES
| View All (29)
Abstract
View article
PDF
In this letter, we aim to measure the relative contribution of coincidence detection and temporal integration to the firing of spikes of a simple neuron model. To this end, we develop a method to infer the degree of synchrony in an ensemble of neurons whose firing drives a single postsynaptic cell. This is accomplished by studying the effects of synchronous inputs on the membrane potential slope of the neuron and estimating the degree of response-relevant input synchrony, which determines the neuron's operational mode. The measure is calculated using the normalized slope of the membrane potential prior to the spikes fired by a neuron, and we demonstrate that it is able to distinguish between the two operational modes. By applying this measure to the membrane potential time course of a leaky integrate-and-fire neuron with the partial somatic reset mechanism, which has been shown to be the most likely candidate to reflect the mechanism used in the brain for reproducing the highly irregular firing at high rates, we show that the partial reset model operates as a temporal integrator of incoming excitatory postsynaptic potentials and that coincidence detection is not necessary for producing such high irregular firing.