Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Alan Yuille
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (6): 1455–1474.
Published: 15 August 1999
Abstract
View article
PDF
The softassign quadratic assignment algorithm is a discrete-time, continuous-state, synchronous updating optimizing neural network. While its effectiveness has been shown in the traveling salesman problem, graph matching, and graph partitioning in thousands of simulations, its convergence properties have not been studied. Here, we construct discrete-time Lyapunov functions for the cases of exact and approximate doubly stochastic constraint satisfaction, which show convergence to a fixed point. The combination of good convergence properties and experimental success makes the softassign algorithm an excellent choice for neural quadratic assignment optimization.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1989) 1 (3): 348–358.
Published: 01 September 1989
Abstract
View article
PDF
This paper analyzes the elastic net approach (Durbin and Willshaw 1987) to the traveling salesman problem of finding the shortest path through a set of cities. The elastic net approach jointly minimizes the length of an arbitrary path in the plane and the distance between the path points and the cities. The tradeoff between these two requirements is controlled by a scale parameter K. A global minimum is found for large K , and is then tracked to a small value. In this paper, we show that (1) in the small K limit the elastic path passes arbitrarily close to all the cities, but that only one path point is attracted to each city, (2) in the large K limit the net lies at the center of the set of cities, and (3) at a critical value of K the energy function bifurcates. We also show that this method can be interpreted in terms of extremizing a probability distribution controlled by K. The minimum at a given K corresponds to the maximum a posteriori (MAP) Bayesian estimate of the tour under a natural statistical interpretation. The analysis presented in this paper gives us a better understanding of the behavior of the elastic net, allows us to better choose the parameters for the optimization, and suggests how to extend the underlying ideas to other domains.