Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Albert Kern
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (9): 2358–2389.
Published: 01 September 2011
FIGURES
| View All (11)
Abstract
View article
PDF
The separation of mixed auditory signals into their sources is an eminent neuroscience and engineering challenge. We reveal the principles underlying a deterministic, neural network–like solution to this problem. This approach is orthogonal to ICA/PCA that views the signal constituents as independent realizations of random processes. We demonstrate exemplarily that in the absence of salient frequency modulations, the decomposition of speech signals into local cosine packets allows for a sparse, noise-robust speaker separation. As the main result, we present analytical limitations inherent in the approach, where we propose strategies of how to deal with this situation. Our results offer new perspectives toward efficient noise cleaning and auditory signal separation and provide a new perspective of how the brain might achieve these tasks.