Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Alessandro Sarti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (2): 394–422.
Published: 01 February 2017
FIGURES
| View All (18)
Abstract
View article
PDF
This letter presents a mathematical model of figure-ground articulation that takes into account both local and global gestalt laws and is compatible with the functional architecture of the primary visual cortex (V1). The local gestalt law of good continuation is described by means of suitable connectivity kernels that are derived from Lie group theory and quantitatively compared with long-range connectivity in V1. Global gestalt constraints are then introduced in terms of spectral analysis of a connectivity matrix derived from these kernels. This analysis performs grouping of local features and individuates perceptual units with the highest salience. Numerical simulations are performed, and results are obtained by applying the technique to a number of stimuli.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (6): 1252–1293.
Published: 01 June 2015
FIGURES
| View All (51)
Abstract
View article
PDF
The visual systems of many mammals, including humans, are able to integrate the geometric information of visual stimuli and perform cognitive tasks at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at the single cell level and geometric processing by means of cell connectivity. We present a geometric model of such connectivities in the space of detected features associated with spatiotemporal visual stimuli and show how they can be used to obtain low-level object segmentation. The main idea is to define a spectral clustering procedure with anisotropic affinities over data sets consisting of embeddings of the visual stimuli into higher-dimensional spaces. Neural plausibility of the proposed arguments will be discussed.