Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Alessandro Sperduti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2005) 17 (5): 1109–1159.
Published: 01 May 2005
Abstract
View article
PDF
Cascade correlation (CC) constitutes a training method for neural networks that determines the weights as well as the neural architecture during training. Various extensions of CC to structured data have been proposed: recurrent cascade correlation (RCC) for sequences, recursive cascade correlation (RecCC) for tree structures with limited fan-out, and contextual recursive cascade correlation (CRecCC) for rooted directed positional acyclic graphs (DPAGs) with limited fan-in and fan-out. We show that these models possess the universal approximation property in the following sense: given a probability measure P on the input set, every measurable function from sequences into a real vector space can be approximated by a sigmoidal RCC up to any desired degree of accuracy up to inputs of arbitrary small probability. Every measurable function from tree structures with limited fan-out into a real vector space can be approximated by a sigmoidal RecCC with multiplicative neurons up to any desired degree of accuracy up to inputs of arbitrary small probability. For sigmoidal CRecCC networks with multiplicative neurons, we show the universal approximation capability for functions on an important subset of all DPAGs with limited fan-in and fan-out for which a specific linear representation yields unique codes. We give one sufficient structural condition for the latter property, which can easily be tested: the enumeration of ingoing and outgoing edges should becom patible. This property can be fulfilled for every DPAG with fan-in and fan-out two via reenumeration of children and parents, and for larger fan-in and fan-out via an expansion of the fan-in and fan-out and reenumeration of children and parents. In addition, the result can be generalized to the case of input-output isomorphic transductions of structures. Thus, CRecCC networks consti-tute the first neural models for which the universal approximation ca-pability of functions involving fairly general acyclic graph structures is proved.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (6): 1355–1370.
Published: 01 June 2000
Abstract
View article
PDF
To overcome the problem of invariant pattern recognition, Simard, LeCun, and Denker (1993) proposed a successful nearest-neighbor approach based on tangent distance, attaining state-of-the-art accuracy. Since this approach needs great computational and memory effort, Hastie, Simard, and Säckinger (1995) proposed an algorithm (HSS) based on singular value decomposition (SVD), for the generation of nondiscriminant tangent models. In this article we propose a different approach, based on a gradient-descent constructive algorithm, called TD-Neuron, that develops discriminant models. We present as well comparative results of our constructive algorithm versus HSS and learning vector quantization (LVQ) algorithms. Specifically, we tested the HSS algorithm using both the original version based on the two-sided tangent distance and a new version based on the one-sided tangent distance. Empirical results over the NIST-3 database show that the TD-Neuron is superior to both SVD- and LVQ-based algorithms, since it reaches a better trade-off between error and rejection.