Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Alfonso Renart
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (2): 391–407.
Published: 01 February 2012
FIGURES
Abstract
View article
PDF
As neural activity is transmitted through the nervous system, neuronal noise degrades the encoded information and limits performance. It is therefore important to know how information loss can be prevented. We study this question in the context of neural population codes. Using Fisher information, we show how information loss in a layered network depends on the connectivity between the layers. We introduce an algorithm, reminiscent of the water filling algorithm for Shannon information that minimizes the loss. The optimal connection profile has a center-surround structure with a spatial extent closely matching the neurons’ tuning curves. In addition, we show how the optimal connectivity depends on the correlation structure of the trial-to-trial variability in the neuronal responses. Our results explain how optimal communication of population codes requires the center-surround architectures found in the nervous system and provide explicit predictions on the connectivity parameters.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (7): 1651–1705.
Published: 01 July 2008
Abstract
View article
PDF
Spike correlations between neurons are ubiquitous in the cortex, but their role is not understood. Here we describe the firing response of a leaky integrate-and-fire neuron (LIF) when it receives a temporarily correlated input generated by presynaptic correlated neuronal populations. Input correlations are characterized in terms of the firing rates, Fano factors, correlation coefficients, and correlation timescale of the neurons driving the target neuron. We show that the sum of the presynaptic spike trains cannot be well described by a Poisson process. In fact, the total input current has a nontrivial two-point correlation function described by two main parameters: the correlation timescale (how precise the input correlations are in time) and the correlation magnitude (how strong they are). Therefore, the total current generated by the input spike trains is not well described by a white noise gaussian process. Instead, we model the total current as a colored gaussian process with the same mean and two-point correlation function, leading to the formulation of the problem in terms of a Fokker-Planck equation. Solutions of the output firing rate are found in the limit of short and long correlation timescales. The solutions described here expand and improve on our previous results (Moreno, de la Rocha, Renart, & Parga, 2002) by presenting new analytical expressions for the output firing rate for general IF neurons, extending the validity of the results for arbitrarily large correlation magnitude, and by describing the differential effect of correlations on the mean-driven or noise-dominated firing regimes. Also the details of this novel formalism are given here for the first time. We employ numerical simulations to confirm the analytical solutions and study the firing response to sudden changes in the input correlations. We expect this formalism to be useful for the study of correlations in neuronal networks and their role in neural processing and information transmission.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (1): 1–46.
Published: 01 January 2007
Abstract
View article
PDF
Spike trains from cortical neurons show a high degree of irregularity, with coefficients of variation (CV) of their interspike interval (ISI) distribution close to or higher than one. It has been suggested that this irregularity might be a reflection of a particular dynamical state of the local cortical circuit in which excitation and inhibition balance each other. In this “balanced” state, the mean current to the neurons is below threshold, and firing is driven by current fluctuations, resulting in irregular Poisson-like spike trains. Recent data show that the degree of irregularity in neuronal spike trains recorded during the delay period of working memory experiments is the same for both low-activity states of a few Hz and for elevated, persistent activity states of a few tens of Hz. Since the difference between these persistent activity states cannot be due to external factors coming from sensory inputs, this suggests that the underlying network dynamics might support coexisting balanced states at different firing rates. We use mean field techniques to study the possible existence of multiple balanced steady states in recurrent networks of current-based leaky integrate-and-fire (LIF) neurons. To assess the degree of balance of a steady state, we extend existing mean-field theories so that not only the firing rate, but also the coefficient of variation of the interspike interval distribution of the neurons, are determined self-consistently. Depending on the connectivity parameters of the network, we find bistable solutions of different types. If the local recurrent connectivity is mainly excitatory, the two stable steady states differ mainly in the mean current to the neurons. In this case, the mean drive in the elevated persistent activity state is suprathreshold and typically characterized by low spiking irregularity. If the local recurrent excitatory and inhibitory drives are both large and nearly balanced, or even dominated by inhibition, two stable states coexist, both with subthreshold current drive. In this case, the spiking variability in both the resting state and the mnemonic persistent state is large, but the balance condition implies parameter fine-tuning. Since the degree of required fine-tuning increases with network size and, on the other hand, the size of the fluctuations in the afferent current to the cells increases for small networks, overall we find that fluctuation-driven persistent activity in the very simplified type of models we analyze is not a robust phenomenon. Possible implications of considering more realistic models are discussed.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (6): 1349–1388.
Published: 15 August 1999
Abstract
View article
PDF
Cortical areas are characterized by forward and backward connections between adjacent cortical areas in a processing stream. Within each area there are recurrent collateral connections between the pyramidal cells. We analyze the properties of this architecture for memory storage and processing. Hebb-like synaptic modifiability in the connections and attractor states are incorporated. We show the following: (1) The number of memories that can be stored in the connected modules is of the same order of magnitude as the number that can be stored in any one module using the recurrent collateral connections, and is proportional to the number of effective connections per neuron. (2) Cooperation between modules leads to a small increase in memory capacity. (3) Cooperation can also help retrieval in a module that is cued with a noisy or incomplete pattern. (4) If the connection strength between modules is strong, then global memory states that reflect the pairs of patterns on which the modules were trained together are found. (5) If the intermodule connection strengths are weaker, then separate, local memory states can exist in each module. (6) The boundaries between the global and local retrieval states, and the nonretrieval state, are delimited. All of these properties are analyzed quantitatively with the techniques of statistical physics.