Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Anca Rǎdulescu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2024) 36 (1): 75–106.
Published: 12 December 2023
FIGURES
| View All (14)
Abstract
View article
PDF
Synchronization and clustering are well studied in the context of networks of oscillators, such as neuronal networks. However, this relationship is notoriously difficult to approach mathematically in natural, complex networks. Here, we aim to understand it in a canonical framework, using complex quadratic node dynamics, coupled in networks that we call complex quadratic networks (CQNs). We review previously defined extensions of the Mandelbrot and Julia sets for networks, focusing on the behavior of the node-wise projections of these sets and on describing the phenomena of node clustering and synchronization. One aspect of our work consists of exploring ties between a network’s connectivity and its ensemble dynamics by identifying mechanisms that lead to clusters of nodes exhibiting identical or different Mandelbrot sets. Based on our preliminary analytical results (obtained primarily in two-dimensional networks), we propose that clustering is strongly determined by the network connectivity patterns, with the geometry of these clusters further controlled by the connection weights. Here, we first explore this relationship further, using examples of synthetic networks, increasing in size (from 3, to 5, to 20 nodes). We then illustrate the potential practical implications of synchronization in an existing set of whole brain, tractography-based networks obtained from 197 human subjects using diffusion tensor imaging. Understanding the similarities to how these concepts apply to CQNs contributes to our understanding of universal principles in dynamic networks and may help extend theoretical results to natural, complex systems.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (1): 1–44.
Published: 01 January 2016
FIGURES
| View All (161)
Abstract
View article
PDF
Recent studies have been using graph-theoretical approaches to model complex networks (such as social, infrastructural, or biological networks) and how their hardwired circuitry relates to their dynamic evolution in time. Understanding how configuration reflects on the coupled behavior in a system of dynamic nodes can be of great importance, for example, in the context of how the brain connectome is affecting brain function. However, the effect of connectivity patterns on network dynamics is far from being fully understood. We study the connections between edge configuration and dynamics in a simple oriented network composed of two interconnected cliques (representative of brain feedback regulatory circuitry). In this article our main goal is to study the spectra of the graph adjacency and Laplacian matrices, with a focus on three aspects in particular: (1) the sensitivity and robustness of the spectrum in response to varying the intra- and intermodular edge density, (2) the effects on the spectrum of perturbing the edge configuration while keeping the densities fixed, and (3) the effects of increasing the network size. We study some tractable aspects analytically, then simulate more general results numerically, thus aiming to motivate and explain our further work on the effect of these patterns on the network temporal dynamics and phase transitions. We discuss the implications of such results to modeling brain connectomics. We suggest potential applications to understanding synaptic restructuring in learning networks and the effects of network configuration on function of regulatory neural circuits.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2014) 26 (4): 654–692.
Published: 01 April 2014
FIGURES
| View All (70)
Abstract
View article
PDF
As an extension of prior work, we studied inspecific Hebbian learning using the classical Oja model. We used a combination of analytical tools and numerical simulations to investigate how the effects of synaptic cross talk (which we also refer to as synaptic inspecificity) depend on the input statistics. We investigated a variety of patterns that appear in dimensions higher than two (and classified them based on covariance type and input bias). We found that the effects of cross talk on learning dynamics and outcome is highly dependent on the input statistics and that cross talk may lead in some cases to catastrophic effects on learning or development. Arbitrarily small levels of cross talk are able to trigger bifurcations in learning dynamics, or bring the system in close enough proximity to a critical state, to make the effects indistinguishable from a real bifurcation. We also investigated how cross talk behaves toward unbiased (“competitive”) inputs and in which circumstances it can help the system productively resolve the competition. Finally, we discuss the idea that sophisticated neocortical learning requires accurate synaptic updates (similar to polynucleotide copying, which requires highly accurate replication). Since it is unlikely that the brain can completely eliminate cross talk, we support the proposal that is uses a neural mechanism that “proofreads” the accuracy of the updates, much as DNA proofreading lowers copying error rate.
Includes: Supplementary data