Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
András Lörincz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2006) 18 (12): 2936–2941.
Published: 01 December 2006
Abstract
View article
PDF
The cross-entropy method is an efficient and general optimization algorithm. However, its applicability in reinforcement learning (RL) seems to be limited because it often converges to suboptimal policies. We apply noise for preventing early convergence of the cross-entropy method, using Tetris, a computer game, for demonstration. The resulting policy outperforms previous RL algorithms by almost two orders of magnitude.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (3): 491–499.
Published: 01 March 2004
Abstract
View article
PDF
There is a growing interest in using Kalman filter models in brain modeling. The question arises whether Kalman filter models can be used on-line not only for estimation but for control. The usual method of optimal control of Kalman filter makes use of off-line backward recursion, which is not satisfactory for this purpose. Here, it is shown that a slight modification of the linear-quadratic-gaussian Kalman filter model allows the on-line estimation of optimal control by using reinforcement learning and overcomes this difficulty. Moreover, the emerging learning rule for value estimation exhibits a Hebbian form, which is weighted by the error of the value estimation.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1994) 6 (3): 441–458.
Published: 01 May 1994
Abstract
View article
PDF
It is shown that local, extended objects of a metrical topological space shape the receptive fields of competitive neurons to local filters. Self-organized topology learning is then solved with the help of Hebbian learning together with extended objects that provide unique information about neighborhood relations. A topographical map is deduced and is used to speed up further adaptation in a changing environment with the help of Kohonen-type learning that teaches the neighbors of winning neurons as well.