Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Andreas Steimer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2013) 25 (9): 2303–2354.
Published: 01 September 2013
FIGURES
| View All (80)
Abstract
View article
PDF
Temporal spike codes play a crucial role in neural information processing. In particular, there is strong experimental evidence that interspike intervals (ISIs) are used for stimulus representation in neural systems. However, very few algorithmic principles exploit the benefits of such temporal codes for probabilistic inference of stimuli or decisions. Here, we describe and rigorously prove the functional properties of a spike-based processor that uses ISI distributions to perform probabilistic inference. The abstract processor architecture serves as a building block for more concrete, neural implementations of the belief-propagation (BP) algorithm in arbitrary graphical models (e.g., Bayesian networks and factor graphs). The distributed nature of graphical models matches well with the architectural and functional constraints imposed by biology. In our model, ISI distributions represent the BP messages exchanged between factor nodes, leading to the interpretation of a single spike as a random sample that follows such a distribution. We verify the abstract processor model by numerical simulation in full graphs, and demonstrate that it can be applied even in the presence of analog variables. As a particular example, we also show results of a concrete, neural implementation of the processor, although in principle our approach is more flexible and allows different neurobiological interpretations. Furthermore, electrophysiological data from area LIP during behavioral experiments are assessed in light of ISI coding, leading to concrete testable, quantitative predictions and a more accurate description of these data compared to hitherto existing models.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (9): 2502–2523.
Published: 01 September 2009
FIGURES
| View All (6)
Abstract
View article
PDF
From a theoretical point of view, statistical inference is an attractive model of brain operation. However, it is unclear how to implement these inferential processes in neuronal networks. We offer a solution to this problem by showing in detailed simulations how the belief propagation algorithm on a factor graph can be embedded in a network of spiking neurons. We use pools of spiking neurons as the function nodes of the factor graph. Each pool gathers “messages” in the form of population activities from its input nodes and combines them through its network dynamics. Each of the various output messages to be transmitted over the edges of the graph is computed by a group of readout neurons that feed in their respective destination pools. We use this approach to implement two examples of factor graphs. The first example, drawn from coding theory, models the transmission of signals through an unreliable channel and demonstrates the principles and generality of our network approach. The second, more applied example is of a psychophysical mechanism in which visual cues are used to resolve hypotheses about the interpretation of an object's shape and illumination. These two examples, and also a statistical analysis, demonstrate good agreement between the performance of our networks and the direct numerical evaluation of belief propagation.
Includes: Supplementary data