Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Angelo Arleo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (4): 852–881.
Published: 01 April 2011
FIGURES
| View All (10)
Abstract
View article
PDF
We set forth an information-theoretical measure to quantify neurotransmission reliability while taking into full account the metrical properties of the spike train space. This parametric information analysis relies on similarity measures induced by the metrical relations between neural responses as spikes flow in. Thus, in order to assess the entropy, the conditional entropy, and the overall information transfer, this method does not require any a priori decoding algorithm to partition the space into equivalence classes. It therefore allows the optimal parameters of a class of distances to be determined with respect to information transmission. To validate the proposed information-theoretical approach, we study precise temporal decoding of human somatosensory signals recorded using microneurography experiments. For this analysis, we employ a similarity measure based on the Victor-Purpura spike train metrics. We show that with appropriate parameters of this distance, the relative spike times of the mechanoreceptors’ responses convey enough information to perform optimal discrimination—defined as maximum metrical information and zero conditional entropy—of 81 distinct stimuli within 40 ms of the first afferent spike. The proposed information-theoretical measure proves to be a suitable generalization of Shannon mutual information in order to consider the metrics of temporal codes explicitly. It allows neurotransmission reliability to be assessed in the presence of large spike train spaces (e.g., neural population codes) with high temporal precision.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (8): 2031–2058.
Published: 01 August 2010
FIGURES
| View All (54)
Abstract
View article
PDF
A nerve cell receives multiple inputs from upstream neurons by way of its synapses. Neuron processing functions are thus influenced by changes in the biophysical properties of the synapse, such as long-term potentiation (LTP) or depression (LTD). This observation has opened new perspectives on the biophysical basis of learning and memory, but its quantitative impact on the information transmission of a neuron remains partially elucidated. One major obstacle is the high dimensionality of the neuronal input-output space, which makes it unfeasible to perform a thorough computational analysis of a neuron with multiple synaptic inputs. In this work, information theory was employed to characterize the information transmission of a cerebellar granule cell over a region of its excitatory input space following synaptic changes. Granule cells have a small dendritic tree (on average, they receive only four mossy fiber afferents), which greatly bounds the input combinatorial space, reducing the complexity of information-theoretic calculations. Numerical simulations and LTP experiments quantified how changes in neurotransmitter release probability ( p ) modulated information transmission of a cerebellar granule cell. Numerical simulations showed that p shaped the neurotransmission landscape in unexpected ways. As p increased, the optimality of the information transmission of most stimuli did not increase strictly monotonically; instead it reached a plateau at intermediate p levels. Furthermore, our results showed that the spatiotemporal characteristics of the inputs determine the effect of p on neurotransmission, thus permitting the selection of distinctive preferred stimuli for different p values. These selective mechanisms may have important consequences on the encoding of cerebellar mossy fiber inputs and the plasticity and computation at the next circuit stage, including the parallel fiber–Purkinje cell synapses.
Includes: Supplementary data