Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Arindam Basu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (3): 723–760.
Published: 01 March 2018
FIGURES
| View All (18)
Abstract
View article
PDF
We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a V and dissipates 19 nW of static power per neuronal cell and 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (11): 2557–2584.
Published: 01 November 2016
FIGURES
| View All (78)
Abstract
View article
PDF
In this letter, we propose a novel neuro-inspired low-resolution online unsupervised learning rule to train the reservoir or liquid of liquid state machines. The liquid is a sparsely interconnected huge recurrent network of spiking neurons. The proposed learning rule is inspired from structural plasticity and trains the liquid through formating and eliminating synaptic connections. Hence, the learning involves rewiring of the reservoir connections similar to structural plasticity observed in biological neural networks. The network connections can be stored as a connection matrix and updated in memory by using address event representation (AER) protocols, which are generally employed in neuromorphic systems. On investigating the pairwise separation property, we find that trained liquids provide 1.36 0.18 times more interclass separation while retaining similar intraclass separation as compared to random liquids. Moreover, analysis of the linear separation property reveals that trained liquids are 2.05 0.27 times better than random liquids. Furthermore, we show that our liquids are able to retain the generalization ability and generality of random liquids. A memory analysis shows that trained liquids have 83.67 5.79 ms longer fading memory than random liquids, which have shown 92.8 5.03 ms fading memory for a particular type of spike train inputs. We also throw some light on the dynamics of the evolution of recurrent connections within the liquid. Moreover, compared to separation-driven synaptic modification', a recently proposed algorithm for iteratively refining reservoirs, our learning rule provides 9.30%, 15.21%, and 12.52% more liquid separations and 2.8%, 9.1%, and 7.9% better classification accuracies for 4, 8, and 12 class pattern recognition tasks, respectively.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2015) 27 (4): 845–897.
Published: 01 April 2015
FIGURES
| View All (75)
Abstract
View article
PDF
This letter presents a spike-based model that employs neurons with functionally distinct dendritic compartments for classifying high-dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron the capacity to perform a large number of input-output mappings. The model uses sparse synaptic connectivity, where each synapse takes a binary value. The optimal connection pattern of a neuron is learned by using a simple hardware-friendly, margin-enhancing learning algorithm inspired by the mechanism of structural plasticity in biological neurons. The learning algorithm groups correlated synaptic inputs on the same dendritic branch. Since the learning results in modified connection patterns, it can be incorporated into current event-based neuromorphic systems with little overhead. This work also presents a branch-specific spike-based version of this structural plasticity rule. The proposed model is evaluated on benchmark binary classification problems, and its performance is compared against that achieved using support vector machine and extreme learning machine techniques. Our proposed method attains comparable performance while using 10% to 50% less in computational resource than the other reported techniques.