Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Arthur Gretton
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (8): 2177–2202.
Published: 01 August 2017
FIGURES
| View All (8)
Abstract
View article
PDF
We propose a nonparametric procedure to achieve fast inference in generative graphical models when the number of latent states is very large. The approach is based on iterative latent variable preselection, where we alternate between learning a selection function to reveal the relevant latent variables and using this to obtain a compact approximation of the posterior distribution for EM. This can make inference possible where the number of possible latent states is, for example, exponential in the number of latent variables, whereas an exact approach would be computationally infeasible. We learn the selection function entirely from the observed data and current expectation-maximization state via gaussian process regression. This is in contrast to earlier approaches, where selection functions were manually designed for each problem setting. We show that our approach performs as well as these bespoke selection functions on a wide variety of inference problems. In particular, for the challenging case of a hierarchical model for object localization with occlusion, we achieve results that match a customized state-of-the-art selection method at a far lower computational cost.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2016) 28 (2): 382–444.
Published: 01 February 2016
FIGURES
| View All (31)
Abstract
View article
PDF
This letter addresses the problem of filtering with a state-space model. Standard approaches for filtering assume that a probabilistic model for observations (i.e., the observation model) is given explicitly or at least parametrically. We consider a setting where this assumption is not satisfied; we assume that the knowledge of the observation model is provided only by examples of state-observation pairs. This setting is important and appears when state variables are defined as quantities that are very different from the observations. We propose kernel Monte Carlo filter, a novel filtering method that is focused on this setting. Our approach is based on the framework of kernel mean embeddings, which enables nonparametric posterior inference using the state-observation examples. The proposed method represents state distributions as weighted samples, propagates these samples by sampling, estimates the state posteriors by kernel Bayes’ rule, and resamples by kernel herding. In particular, the sampling and resampling procedures are novel in being expressed using kernel mean embeddings, so we theoretically analyze their behaviors. We reveal the following properties, which are similar to those of corresponding procedures in particle methods: the performance of sampling can degrade if the effective sample size of a weighted sample is small, and resampling improves the sampling performance by increasing the effective sample size. We first demonstrate these theoretical findings by synthetic experiments. Then we show the effectiveness of the proposed filter by artificial and real data experiments, which include vision-based mobile robot localization.