Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Attila Szücs
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (4): 973–990.
Published: 01 April 2009
FIGURES
| View All (6)
Abstract
View article
PDF
Recent experimental findings have shown the presence of robust and cell-type-specific intraburst firing patterns in bursting neurons. We address the problem of characterizing these patterns under the assumption that the bursts exhibit well-defined firing time distributions. We propose a method for estimating these distributions based on a burst alignment algorithm that minimizes the overlap among the firing time distributions of the different spikes within the burst. This method provides a good approximation to the burst's intrinsic temporal structure as a set of firing time distributions. In addition, the method allows labeling the spikes in any particular burst, establishing a correspondence between each spike and the distribution that best explains it, and identifying missing spikes. Our results on both simulated and experimental data from the lobster stomatogastric ganglion show that the proposed method provides a reliable characterization of the intraburst firing patterns and avoids the errors derived from missing spikes. This method can also be applied to nonbursting neurons as a general tool for the study and the interpretation of firing time distributions as part of a temporal neural code.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (8): 1985–2003.
Published: 01 August 2007
Abstract
View article
PDF
In a recent article, Prinz, Bucher, and Marder (2004) addressed the fundamental question of whether neural systems are built with a fixed blueprint of tightly controlled parameters or in a way in which properties can vary largely from one individual to another, using a database modeling approach. Here, we examine the main conclusion that neural circuits indeed are built with largely varying parameters in the light of our own experimental and modeling observations. We critically discuss the experimental and theoretical evidence, including the general adequacy of database approaches for questions of this kind, and come to the conclusion that the last word for this fundamental question has not yet been spoken.