Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Aykut Erdem
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2012) 24 (3): 700–723.
Published: 01 March 2012
FIGURES
Abstract
View articletitled, Graph Transduction as a Noncooperative Game
View
PDF
for article titled, Graph Transduction as a Noncooperative Game
Graph transduction is a popular class of semisupervised learning techniques that aims to estimate a classification function defined over a graph of labeled and unlabeled data points. The general idea is to propagate the provided label information to unlabeled nodes in a consistent way. In contrast to the traditional view, in which the process of label propagation is defined as a graph Laplacian regularization, this article proposes a radically different perspective, based on game-theoretic notions. Within the proposed framework, the transduction problem is formulated in terms of a noncooperative multiplayer game whereby equilibria correspond to consistent labelings of the data. An attractive feature of this formulation is that it is inherently a multiclass approach and imposes no constraint whatsoever on the structure of the pairwise similarity matrix, being able to naturally deal with asymmetric and negative similarities alike. Experiments on a number of real-world problems demonstrate that the proposed approach performs well compared with state-of-the-art algorithms, and it can deal effectively with various types of similarity relations.