Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Behzad Nazari
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (5): 1269–1299.
Published: 13 April 2021
FIGURES
Abstract
View article
PDF
It is of great interest to characterize the spiking activity of individual neurons in a cell ensemble. Many different mechanisms, such as synaptic coupling and the spiking activity of itself and its neighbors, drive a cell's firing properties. Though this is a widely studied modeling problem, there is still room to develop modeling solutions by simplifications embedded in previous models. The first shortcut is that synaptic coupling mechanisms in previous models do not replicate the complex dynamics of the synaptic response. The second is that the number of synaptic connections in these models is an order of magnitude smaller than in an actual neuron. In this research, we push this barrier by incorporating a more accurate model of the synapse and propose a system identification solution that can scale to a network incorporating hundreds of synaptic connections. Although a neuron has hundreds of synaptic connections, only a subset of these connections significantly contributes to its spiking activity. As a result, we assume the synaptic connections are sparse, and to characterize these dynamics, we propose a Bayesian point-process state-space model that lets us incorporate the sparsity of synaptic connections within the regularization technique into our framework. We develop an extended expectation-maximization. algorithm to estimate the free parameters of the proposed model and demonstrate the application of this methodology to the problem of estimating the parameters of many dynamic synaptic connections. We then go through a simulation example consisting of the dynamic synapses across a range of parameter values and show that the model parameters can be estimated using our method. We also show the application of the proposed algorithm in the intracellular data that contains 96 presynaptic connections and assess the estimation accuracy of our method using a combination of goodness-of-fit measures.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (11): 2145–2186.
Published: 01 November 2020
Abstract
View article
PDF
Marked point process models have recently been used to capture the coding properties of neural populations from multiunit electrophysiological recordings without spike sorting. These clusterless models have been shown in some instances to better describe the firing properties of neural populations than collections of receptive field models for sorted neurons and to lead to better decoding results. To assess their quality, we previously proposed a goodness-of-fit technique for marked point process models based on time rescaling, which for a correct model produces a set of uniform samples over a random region of space. However, assessing uniformity over such a region can be challenging, especially in high dimensions. Here, we propose a set of new transformations in both time and the space of spike waveform features, which generate events that are uniformly distributed in the new mark and time spaces. These transformations are scalable to multidimensional mark spaces and provide uniformly distributed samples in hypercubes, which are well suited for uniformity tests. We discuss the properties of these transformations and demonstrate aspects of model fit captured by each transformation. We also compare multiple uniformity tests to determine their power to identify lack-of-fit in the rescaled data. We demonstrate an application of these transformations and uniformity tests in a simulation study. Proofs for each transformation are provided in the appendix.