Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Bo Cartling
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (8): 1643–1652.
Published: 01 November 1996
Abstract
View article
PDF
It is shown that a low-dimensional model neuron with a response time constant smaller than the membrane time constant closely reproduces the activity and excitability behavior of a detailed conductance-based model of Hodgkin-Huxley type. The fast response of the activity variable also makes it possible to reduce the model to a one-dimensional model, in particular for typical conditions. As an example, the reduction to a single-variable model from a multivariable conductance-based model of a neocortical pyramidal cell with somatic input is demonstrated. The conditions for avoiding a spurious damped oscillatory response to a constant input are derived, and it is shown that a limit-cycle response cannot occur. The capability of the low-dimensional model to approximate higher-dimensional models accurately makes it useful for describing complex dynamics of nets of interconnected neurons. The simplicity of the model facilitates analytic studies, elucidation of neurocomputational mechanisms, and applications to large-scale systems.