Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Brian Franco
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2020) 32 (5): 969–1017.
Published: 01 May 2020
FIGURES
Abstract
View article
PDF
The Kalman filter provides a simple and efficient algorithm to compute the posterior distribution for state-space models where both the latent state and measurement models are linear and gaussian. Extensions to the Kalman filter, including the extended and unscented Kalman filters, incorporate linearizations for models where the observation model p ( observation | state ) is nonlinear. We argue that in many cases, a model for p ( state | observation ) proves both easier to learn and more accurate for latent state estimation. Approximating p ( state | observation ) as gaussian leads to a new filtering algorithm, the discriminative Kalman filter (DKF), which can perform well even when p ( observation | state ) is highly nonlinear and/or nongaussian. The approximation, motivated by the Bernstein–von Mises theorem, improves as the dimensionality of the observations increases. The DKF has computational complexity similar to the Kalman filter, allowing it in some cases to perform much faster than particle filters with similar precision, while better accounting for nonlinear and nongaussian observation models than Kalman-based extensions. When the observation model must be learned from training data prior to filtering, off-the-shelf nonlinear and nonparametric regression techniques can provide a gaussian model for p ( observation | state ) that cleanly integrates with the DKF. As part of the BrainGate2 clinical trial, we successfully implemented gaussian process regression with the DKF framework in a brain-computer interface to provide real-time, closed-loop cursor control to a person with a complete spinal cord injury. In this letter, we explore the theory underlying the DKF, exhibit some illustrative examples, and outline potential extensions.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Neural Computation (2018) 30 (11): 2986–3008.
Published: 01 November 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Intracortical brain computer interfaces can enable individuals with paralysis to control external devices through voluntarily modulated brain activity. Decoding quality has been previously shown to degrade with signal nonstationarities—specifically, the changes in the statistics of the data between training and testing data sets. This includes changes to the neural tuning profiles and baseline shifts in firing rates of recorded neurons, as well as nonphysiological noise. While progress has been made toward providing long-term user control via decoder recalibration, relatively little work has been dedicated to making the decoding algorithm more resilient to signal nonstationarities. Here, we describe how principled kernel selection with gaussian process regression can be used within a Bayesian filtering framework to mitigate the effects of commonly encountered nonstationarities. Given a supervised training set of (neural features, intention to move in a direction)-pairs, we use gaussian process regression to predict the intention given the neural data. We apply kernel embedding for each neural feature with the standard radial basis function. The multiple kernels are then summed together across each neural dimension, which allows the kernel to effectively ignore large differences that occur only in a single feature. The summed kernel is used for real-time predictions of the posterior mean and variance under a gaussian process framework. The predictions are then filtered using the discriminative Kalman filter to produce an estimate of the neural intention given the history of neural data. We refer to the multiple kernel approach combined with the discriminative Kalman filter as the MK-DKF. We found that the MK-DKF decoder was more resilient to nonstationarities frequently encountered in-real world settings yet provided similar performance to the currently used Kalman decoder. These results demonstrate a method by which neural decoding can be made more resistant to nonstationarities.