Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Burak Güçlü
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (10): 2638–2664.
Published: 01 October 2007
Abstract
View article
PDF
This study involves psychophysical experiments and computer simulations to investigate intensity discrimination in the non-Pacinian I (NP I) tactile channel. The simulations were based on an established population model for rapidly adapting mechanoreceptive fibers (Güuçlü & Bolanowski, 2004a). Several intensity codes were tested as decision criteria: number of active neurons, total spike count, maximal spike count, distribution of spike counts among the afferent population, and synchronization of spike times. Simulations that used the number of active fibers as the intensity code gave the most accurate results. However, the Weber fractions obtained from simulations are smaller than psychophysical Weber fractions, which suggests that only a subset of the afferent population is recruited for intensity discrimination during psychophysical experiments. Simulations could also capture the deviation from Weber's law, that is, the decrease of the Weber fraction as a function of the stimulus level, which was present in the psychophysical data. Since the psychophysical task selectively activated the NP I channel, the deviation effect is probably not due to the contribution of another tactile channel but rather is explicitly produced by the NP I channel. Moreover, because simulations with all tested intensity codes resulted in the same effect, the activity of the afferent population is sufficient to explain the deviation, without the need for a higher-order network. Depending on the intensity code used, the mechanical spread of the stimulus, rate-intensity functions of the tactile fibers, and the decreasing spike-phase jitter contribute to the deviation from Weber's law.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2004) 16 (1): 39–58.
Published: 01 January 2004
Abstract
View article
PDF
The goal of this study is to establish a link between somatosensory physiology and psychophysics at the probabilistic level. The model for a population of monkey rapidly adapting (RA) mechanoreceptive fibers by Güçlü and Bolanowski (2002) was used to study the probability of stimulus detection when a 40 Hz sinusoidal stimulation is applied with a constant contactor size (2 mm radius) on the terminal phalanx. In the model, the detection was assumed to be mediated by one or more active fibers. Two hypothetical receptive field organizations (uniformly random and gaussian) with varying average innervation densities were considered. At a given stimulus-contactor location, changing the stimulus amplitude generates sigmoid probability-of-detection curves for both receptive field organizations. The psychophysical results superimposed on these probability curves suggest that 5 to 10 active fibers may be required for detection. The effects of the contactor location on the probability of detection reflect the pattern of innervation in the model. However, the psychophysical data do not match with the predictions from the populations with uniform or gaussian distributed receptive field centers. This result may be due to some unknown mechanical factors along the terminal phalanx, or simply because a different receptive field organization is present. It has been reported that human observers can detect one single spike in an RA fiber. By considering the probability of stimulus detection across subjects and RA populations, this article proves that more than one active fiber is indeed required for detection.