Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Cédric Févotte
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2011) 23 (9): 2421–2456.
Published: 01 September 2011
FIGURES
| View All (16)
Abstract
View article
PDF
This letter describes algorithms for nonnegative matrix factorization (NMF) with the β-divergence (β-NMF). The β-divergence is a family of cost functions parameterized by a single shape parameter β that takes the Euclidean distance, the Kullback-Leibler divergence, and the Itakura-Saito divergence as special cases (β = 2, 1, 0 respectively). The proposed algorithms are based on a surrogate auxiliary function (a local majorization of the criterion function). We first describe a majorization-minimization algorithm that leads to multiplicative updates, which differ from standard heuristic multiplicative updates by a β-dependent power exponent. The monotonicity of the heuristic algorithm can, however, be proven for β ∈ (0, 1) using the proposed auxiliary function. Then we introduce the concept of the majorization-equalization (ME) algorithm, which produces updates that move along constant level sets of the auxiliary function and lead to larger steps than MM. Simulations on synthetic and real data illustrate the faster convergence of the ME approach. The letter also describes how the proposed algorithms can be adapted to two common variants of NMF: penalized NMF (when a penalty function of the factors is added to the criterion function) and convex NMF (when the dictionary is assumed to belong to a known subspace).
Journal Articles
Publisher: Journals Gateway
Neural Computation (2009) 21 (3): 793–830.
Published: 01 March 2009
FIGURES
| View All (12)
Abstract
View article
PDF
This letter presents theoretical, algorithmic, and experimental results about nonnegative matrix factorization (NMF) with the Itakura-Saito (IS) divergence. We describe how IS-NMF is underlaid by a well-defined statistical model of superimposed gaussian components and is equivalent to maximum likelihood estimation of variance parameters. This setting can accommodate regularization constraints on the factors through Bayesian priors. In particular, inverse-gamma and gamma Markov chain priors are considered in this work. Estimation can be carried out using a space-alternating generalized expectation-maximization (SAGE) algorithm; this leads to a novel type of NMF algorithm, whose convergence to a stationary point of the IS cost function is guaranteed. We also discuss the links between the IS divergence and other cost functions used in NMF, in particular, the Euclidean distance and the generalized Kullback-Leibler (KL) divergence. As such, we describe how IS-NMF can also be performed using a gradient multiplicative algorithm (a standard algorithm structure in NMF) whose convergence is observed in practice, though not proven. Finally, we report a furnished experimental comparative study of Euclidean-NMF, KL-NMF, and IS-NMF algorithms applied to the power spectrogram of a short piano sequence recorded in real conditions, with various initializations and model orders. Then we show how IS-NMF can successfully be employed for denoising and upmix (mono to stereo conversion) of an original piece of early jazz music. These experiments indicate that IS-NMF correctly captures the semantics of audio and is better suited to the representation of music signals than NMF with the usual Euclidean and KL costs.