Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
C. Meunier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (7): 1607–1641.
Published: 01 July 2000
Abstract
View article
PDF
The emergence of synchrony in the activity of large, heterogeneous networks of spiking neurons is investigated. We define the robustness of synchrony by the critical disorder at which the asynchronous state becomes linearly unstable. We show that at low firing rates, synchrony is more robust in excitatory networks than in inhibitory networks, but excitatory networks cannot display any synchrony when the average firing rate becomes too high. We introduce a new regime where all inputs, external and internal, are strong and have opposite effects that cancel each other when averaged. In this regime, the robustness of synchrony is strongly enhanced, and robust synchrony can be achieved at a high firing rate in inhibitory networks. On the other hand, in excitatory networks, synchrony remains limited in frequency due to the intrinsic instability of strong recurrent excitation.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1998) 10 (2): 467–483.
Published: 15 February 1998
Abstract
View article
PDF
It is shown that very small time steps are required to reproduce correctly the synchronization properties of large networks of integrate-and-fire neurons when the differential system describing their dynamics is integrated with the standard Euler or second-order Runge-Kutta algorithms. The reason for that behavior is analyzed, and a simple improvement of these algorithms is proposed.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1995) 7 (2): 307–337.
Published: 01 March 1995
Abstract
View article
PDF
Synchronization properties of fully connected networks of identical oscillatory neurons are studied, assuming purely excitatory interactions. We analyze their dependence on the time course of the synaptic interaction and on the response of the neurons to small depolarizations. Two types of responses are distinguished. In the first type, neurons always respond to small depolarization by advancing the next spike. In the second type, an excitatory postsynaptic potential (EPSP) received after the refractory period delays the firing of the next spike, while an EPSP received at a later time advances the firing. For these two types of responses we derive general conditions under which excitation destabilizes in-phase synchrony. We show that excitation is generally desynchronizing for neurons with a response of type I but can be synchronizing for responses of type II when the synaptic interactions are fast. These results are illustrated on three models of neurons: the Lapicque integrate-and-fire model, the model of Connor et al ., and the Hodgkin-Huxley model. The latter exhibits a type II response, at variance with the first two models, that have type I responses. We then examine the consequences of these results for large networks, focusing on the states of partial coherence that emerge. Finally, we study the Lapicque model and the model of Connor et al . at large coupling and show that excitation can be desynchronizing even beyond the weak coupling regime.