Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Carlos D. Brody
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (11): 2861–2886.
Published: 01 November 2017
FIGURES
| View All (29)
Abstract
View article
PDF
Two-node attractor networks are flexible models for neural activity during decision making. Depending on the network configuration, these networks can model distinct aspects of decisions including evidence integration, evidence categorization, and decision memory. Here, we use attractor networks to model recent causal perturbations of the frontal orienting fields (FOF) in rat cortex during a perceptual decision-making task (Erlich, Brunton, Duan, Hanks, & Brody, 2015 ). We focus on a striking feature of the perturbation results. Pharmacological silencing of the FOF resulted in a stimulus-independent bias. We fit several models to test whether integration, categorization, or decision memory could account for this bias and found that only the memory configuration successfully accounts for it. This memory model naturally accounts for optogenetic perturbations of FOF in the same task and correctly predicts a memory-duration-dependent deficit caused by silencing FOF in a different task. Our results provide mechanistic support for a “postcategorization” memory role of the FOF in upcoming choices.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (2): 452–485.
Published: 01 February 2008
Abstract
View article
PDF
Neurons that sustain elevated firing in the absence of stimuli have been found in many neural systems. In graded persistent activity, neurons can sustain firing at many levels, suggesting a widely found type of network dynamics in which networks can relax to any one of a continuum of stationary states. The reproduction of these findings in model networks of nonlinear neurons has turned out to be nontrivial. A particularly insightful model has been the “bump attractor,” in which a continuous attractor emerges through an underlying symmetry in the network connectivity matrix. This model, however, cannot account for data in which the persistent firing of neurons is a monotonic—rather than a bell-shaped—function of a stored variable. Here, we show that the symmetry used in the bump attractor network can be employed to create a whole family of continuous attractor networks, including those with monotonic tuning. Our design is based on tuning the external inputs to networks that have a connectivity matrix with Toeplitz symmetry. In particular, we provide a complete analytical solution of a line attractor network with monotonic tuning and show that for many other networks, the numerical tuning of synaptic weights reduces to the computation of a single parameter.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1527–1535.
Published: 01 October 1999
Abstract
View article
PDF
Covariations in neuronal latency or excitability can lead to peaks in spike train covariograms that may be very similar to those caused by spike timing synchronization (see companion article). Two quantitative methods are described here. The first is a method to estimate the excitability component of a covariogram, based on trial-by-trial estimates of excitability. Once estimated, this component may be subtracted from the covariogram, leaving only other types of contributions. The other is a method to determine whether the covariogram could potentially have been caused by latency covariations.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1537–1551.
Published: 01 October 1999
Abstract
View article
PDF
Peaks in spike train correlograms are usually taken as indicative of spike timing synchronization between neurons. Strictly speaking, however, a peak merely indicates that the two spike trains were not independent. Two biologically plausible ways of departing from independence that are capable of generating peaks very similar to spike timing peaks are described here: covariations over trials in response latency and covariations over trials in neuronal excitability. Since peaks due to these interactions can be similar to spike timing peaks, interpreting a correlogram may be a problem with ambiguous solutions. What peak shapes do latency or excitability interactions generate? When are they similar to spike timing peaks? When can they be ruled out from having caused an observed correlogram peak? These are the questions addressed here. The previous article in this issue proposes quantitative methods to tell cases apart when latency or excitability covariations cannot be ruled out.