Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Carlos G. Puntonet
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (2): 419–439.
Published: 01 February 2003
Abstract
View article
PDF
Geometric algorithms for linear independent component analysis (ICA) have recently received some attention due to their pictorial description and their relative ease of implementation. The geometric approach to ICA was proposed first by Puntonet and Prieto (1995). We will reconsider geometric ICA in a theoretic framework showing that fixed points of geometric ICA fulfill a geometric convergence condition (GCC), which the mixed images of the unit vectors satisfy too. This leads to a conjecture claiming that in the nongaussian unimodal symmetric case, there is only one stable fixed point, implying the uniqueness of geometric ICA after convergence. Guided by the principles of ordinary geometric ICA, we then present a new approach to linear geometric ICA based on histograms observing a considerable improvement in separation quality of different distributions and a sizable reduction in computational cost, by a factor of 100, compared to the ordinary geometric approach. Furthermore, we explore the accuracy of the algorithm depending on the number of samples and the choice of the mixing matrix, and compare geometric algorithms with classical ICA algorithms, namely, Extended Infomax and FastICA. Finally, we discuss the problem of high-dimensional data sets within the realm of geometrical ICA algorithms.