Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Carson C. Chow
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2021) 33 (5): 1199–1233.
Published: 13 April 2021
Abstract
View article
PDF
Recurrent neural networks trained to perform complex tasks can provide insight into the dynamic mechanism that underlies computations performed by cortical circuits. However, due to a large number of unconstrained synaptic connections, the recurrent connectivity that emerges from network training may not be biologically plausible. Therefore, it remains unknown if and how biological neural circuits implement dynamic mechanisms proposed by the models. To narrow this gap, we developed a training scheme that, in addition to achieving learning goals, respects the structural and dynamic properties of a standard cortical circuit model: strongly coupled excitatory-inhibitory spiking neural networks. By preserving the strong mean excitatory and inhibitory coupling of initial networks, we found that most of trained synapses obeyed Dale's law without additional constraints, exhibited large trial-to-trial spiking variability, and operated in inhibition-stabilized regime. We derived analytical estimates on how training and network parameters constrained the changes in mean synaptic strength during training. Our results demonstrate that training recurrent neural networks subject to strong coupling constraints can result in connectivity structure and dynamic regime relevant to cortical circuits.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2010) 22 (2): 377–426.
Published: 01 February 2010
FIGURES
| View All (8)
Abstract
View article
PDF
Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2007) 19 (12): 3262–3292.
Published: 01 December 2007
Abstract
View article
PDF
We present a simple Markov model of spiking neural dynamics that can be analytically solved to characterize the stochastic dynamics of a finite-size spiking neural network. We give closed-form estimates for the equilibrium distribution, mean rate, variance, and autocorrelation function of the network activity. The model is applicable to any network where the probability of firing of a neuron in the network depends on only the number of neurons that fired in a previous temporal epoch. Networks with statistically homogeneous connectivity and membrane and synaptic time constants that are not excessively long could satisfy these conditions. Our model completely accounts for the size of the network and correlations in the firing activity. It also allows us to examine how the network dynamics can deviate from mean field theory. We show that the model and solutions are applicable to spiking neural networks in biophysically plausible parameter regimes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (7): 1473–1494.
Published: 01 July 2001
Abstract
View article
PDF
We examine the existence and stability of spatially localized “bumps” of neuronal activity in a network of spiking neurons. Bumps have been proposed in mechanisms of visual orientation tuning, the rat head direction system, and working memory. We show that a bump solution can exist in a spiking network provided the neurons fire asynchronously within the bump. We consider a parameter regime where the bump solution is bistable with an all-off state and can be initiated with a transient excitatory stimulus. We show that the activity profile matches that of a corresponding population rate model. The bump in a spiking network can lose stability through partial synchronization to either a traveling wave or the all-off state. This can occur if the synaptic timescale is too fast through a dynamical effect or if a transient excitatory pulse is applied to the network. A bump can thus be activated and deactivated with excitatory inputs that may have physiological relevance.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2000) 12 (7): 1643–1678.
Published: 01 July 2000
Abstract
View article
PDF
We analyze the existence and stability of phase-locked states of neurons coupled electrically with gap junctions. We show that spike shape and size, along with driving current (which affects network frequency), play a large role in which phase-locked modes exist and are stable. Our theory makes predictions about biophysical models using spikes of different shapes, and we present simulations to confirm the predictions. We also analyze a large system of all-to-all coupled neurons and show that the splay-phase state can exist only for a certain range of frequencies.