Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Christian K. Machens
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (2): 452–485.
Published: 01 February 2008
Abstract
View article
PDF
Neurons that sustain elevated firing in the absence of stimuli have been found in many neural systems. In graded persistent activity, neurons can sustain firing at many levels, suggesting a widely found type of network dynamics in which networks can relax to any one of a continuum of stationary states. The reproduction of these findings in model networks of nonlinear neurons has turned out to be nontrivial. A particularly insightful model has been the “bump attractor,” in which a continuous attractor emerges through an underlying symmetry in the network connectivity matrix. This model, however, cannot account for data in which the persistent firing of neurons is a monotonic—rather than a bell-shaped—function of a stored variable. Here, we show that the symmetry used in the bump attractor network can be employed to create a whole family of continuous attractor networks, including those with monotonic tuning. Our design is based on tuning the external inputs to networks that have a connectivity matrix with Toeplitz symmetry. In particular, we provide a complete analytical solution of a line attractor network with monotonic tuning and show that for many other networks, the numerical tuning of synaptic weights reduces to the computation of a single parameter.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2002) 14 (6): 1323–1346.
Published: 01 June 2002
Abstract
View article
PDF
We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima depend on several factors: the relative magnitudes of the signaling cost (current flow through channels), the fixed cost of maintaining the system, the reliability of the input, additional sources of noise, and the relative costs of upstream and downstream mechanisms. We also analyze how the statistics of input signals influence energy efficiency. We find that energy-efficient signal ensembles favor a bimodal distribution of channel activations and contain only a very small fraction of large inputs when energy is scarce. We conclude that when energy use is a significant constraint, trade-offs between information transfer and energy can strongly influence the number of signaling molecules and synapses used by neurons and the manner in which these mechanisms represent information.