Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Christophe Molina
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (4): 855–868.
Published: 01 May 1996
Abstract
View article
PDF
The principle of F-projection, in sequential function estimation, provides a theoretical foundation for a class of gaussian radial basis function networks known as the resource allocating networks (RAN). The ad hoc rules for adaptively changing the size of RAN architectures can be justified from a geometric growth criterion defined in the function space. In this paper, we show that the same arguments can be used to arrive at a pruning with replacement rule for RAN architectures with a limited number of units. We illustrate the algorithm on the laser time series prediction problem of the Santa Fe competition and show that results similar to those of the winners of the competition can be obtained with pruning and replacement.