Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Christopher Summerfield
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2022) 34 (2): 307–337.
Published: 14 January 2022
Abstract
View article
PDF
Reinforcement learning involves updating estimates of the value of states and actions on the basis of experience. Previous work has shown that in humans, reinforcement learning exhibits a confirmatory bias: when the value of a chosen option is being updated, estimates are revised more radically following positive than negative reward prediction errors, but the converse is observed when updating the unchosen option value estimate. Here, we simulate performance on a multi-arm bandit task to examine the consequences of a confirmatory bias for reward harvesting. We report a paradoxical finding: that confirmatory biases allow the agent to maximize reward relative to an unbiased updating rule. This principle holds over a wide range of experimental settings and is most influential when decisions are corrupted by noise. We show that this occurs because on average, confirmatory biases lead to overestimating the value of more valuable bandits and underestimating the value of less valuable bandits, rendering decisions overall more robust in the face of noise. Our results show how apparently suboptimal learning rules can in fact be reward maximizing if decisions are made with finite computational precision.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2017) 29 (2): 368–393.
Published: 01 February 2017
FIGURES
| View All (43)
Abstract
View article
PDF
Much experimental evidence suggests that during decision making, neural circuits accumulate evidence supporting alternative options. A computational model well describing this accumulation for choices between two options assumes that the brain integrates the log ratios of the likelihoods of the sensory inputs given the two options. Several models have been proposed for how neural circuits can learn these log-likelihood ratios from experience, but all of these models introduced novel and specially dedicated synaptic plasticity rules. Here we show that for a certain wide class of tasks, the log-likelihood ratios are approximately linearly proportional to the expected rewards for selecting actions. Therefore, a simple model based on standard reinforcement learning rules is able to estimate the log-likelihood ratios from experience and on each trial accumulate the log-likelihood ratios associated with presented stimuli while selecting an action. The simulations of the model replicate experimental data on both behavior and neural activity in tasks requiring accumulation of probabilistic cues. Our results suggest that there is no need for the brain to support dedicated plasticity rules, as the standard mechanisms proposed to describe reinforcement learning can enable the neural circuits to perform efficient probabilistic inference.