Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Ciriyam Jayaprakash
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2001) 13 (5): 1003–1021.
Published: 01 May 2001
Abstract
View article
PDF
We study locally coupled networks of relaxation oscillators with excitatory connections and conduction delays and propose a mechanism for achieving zero phase-lag synchrony. Our mechanism is based on the observation that different rates of motion along different nullclines of the system can lead to synchrony in the presence of conduction delays. We analyze the system of two coupled oscillators and derive phase compression rates. This analysis indicates how to choose nullclines for individual relaxation oscillators in order to induce rapid synchrony. The numerical simulations demonstrate that our analytical results extend to locally coupled networks with conduction delays and that these networks can attain rapid synchrony with appropriately chosen nullclines and initial conditions. The robustness of the proposed mechanism is verified with respect to different nullclines, variations in parameter values, and initial conditions.
Journal Articles
Publisher: Journals Gateway
Neural Computation (1999) 11 (7): 1595–1619.
Published: 01 October 1999
Abstract
View article
PDF
Due to many experimental reports of synchronous neural activity in the brain, there is much interest in understanding synchronization in networks of neural oscillators and its potential for computing perceptual organization. Contrary to Hopfield and Herz (1995), we find that networks of locally coupled integrate-and-fire oscillators can quickly synchronize. Furthermore, we examine the time needed to synchronize such networks. We observe that these networks synchronize at times proportional to the logarithm of their size, and we give the parameters used to control the rate of synchronization. Inspired by locally excitatory globally inhibitory oscillator network (LEGION) dynamics with relaxation oscillators (Terman & Wang, 1995), we find that global inhibition can play a similar role of desynchronization in a network of integrate-and-fire oscillators. We illustrate that a LEGION architecture with integrate-and-fire oscillators can be similarly used to address image analysis.