Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Danil Prokhorov
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (2008) 20 (10): 2564–2596.
Published: 01 October 2008
Abstract
View article
PDF
Recurrent neural networks with fixed weights have been shown in practice to successfully classify adaptively signals that vary as a function of time in the presence of additive noise and parametric perturbations. We address the question: Can this ability be explained theoretically? We provide a mathematical proof that these networks have this ability even when parametric perturbations enter the signals nonlinearly. The restrictions that we impose on the signals to be classified are that they satisfy an assumption of nondegeneracy and that noise amplitude is sufficiently small. Further, we demonstrate that the recurrent neural networks may not only classify uncertain signals adaptively but also can recover the values of uncertain parameters of the signals, up to their equivalence classes.
Journal Articles
Publisher: Journals Gateway
Neural Computation (2003) 15 (10): 2419–2455.
Published: 01 October 2003
Abstract
View article
PDF
Superposition of sigmoid function over a finite time interval is shown to be equivalent to the linear combination of the solutions of a linearly parameterized system of logistic differential equations. Due to the linearity with respect to the parameters of the system, it is possible to design an effective procedure for parameter adjustment. Stability properties of this procedure are analyzed.