Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
David A. August
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1996) 8 (1): 67–84.
Published: 01 January 1996
Abstract
View articletitled, A Simple Spike Train Decoder Inspired by the Sampling Theorem
View
PDF
for article titled, A Simple Spike Train Decoder Inspired by the Sampling Theorem
Reconstructing a time-varying stimulus estimate from a spike train (Bialek's “decoding” of a spike train) has become an important way to study neural information processing. In this paper, we describe a simple method for reconstructing a time-varying current injection signal from the simulated spike train it produces. This technique extracts most of the information from the spike train, provided that the input signal is appropriately matched to the spike generator. To conceptualize this matching, we consider spikes as instantaneous “samples” of the somatic current. The Sampling Theorem is then applicable, and it suggests that the bandwidth of the injected signal not exceed half the spike generator's average firing rate. The average firing rate, in turn, depends on the amplitude range and DC bias of the injected signal. We hypothesize that nature faces similar problems and constraints when transmitting a time-varying waveform from the soma of one neuron to the dendrite of the postsynaptic cell.