Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
David Z. D'Argenio
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Neural Computation (1990) 2 (2): 216–225.
Published: 01 June 1990
Abstract
View article
PDF
The feasibility of developing a neural network to perform nonlinear Bayesian estimation from sparse data is explored using an example from clinical pharmacology. The problem involves estimating parameters of a dynamic model describing the pharmacokinetics of the bronchodilator theophylline from limited plasma concentration measurements of the drug obtained in a patient. The estimation performance of a backpropagation trained network is compared to that of the maximum likelihood estimator as well as the maximum a posteriori probability estimator. In the example considered, the estimator prediction errors (model parameters and outputs) obtained from the trained neural network were similar to those obtained using the nonlinear Bayesian estimator.